The Response of the Alaska Boreal Forest to a Warming Climate

Valerie A. Barber, Glenn P. Juday and Martin Wilmking

All at the University of Alaska Department of Forest Sciences
Interior Alaska location of weather stations and study sites

A. Weather stations:
1. Fairbanks/UES
2. Big Delta
3. McGrath
4. Bettles

B. Map showing locations of weather stations.

Inset:
- Town or village
- Ring-width < 7 trees
- Ring-width > 7 trees
- Highway/road
- Latewood density
- 13C

C. Inset map focusing on Bonanza Creek LTER.
Responsiveness of tree-ring properties to Fairbanks mean monthly temperatures

A. ring-width

B. 13C

C. latewood density (MLwD)

month
Historic and reconstructed relationship between white spruce growth and summer temperature and climate scenarios in central Alaska

- temperature
- regional tree ring-width

- CCC scenario
- CSM scenario

- colder
- warmer

- probable zone of species elimination

- reconstructed temperature (isotope & density)

- period of instrument record

- period of climate model scenarios

- time slice #1
- time slice #2
- time slice #3

Fairbanks 2-yr. mean May-Aug temperature (oC)

White spruce radial growth (mm)
Climate sensitivity of radial growth in central Alaska birch

- Buffalo Lane (birch)
- Kaho (birch)
- Green Birch
- 2Red Fox Dr. (birch)
- Spinach Creek (birch)
- Live Birch

Correlation coefficient vs. month
Relationship of temperature indices to radial growth of negative responders in Alaska birch

ANNUAL VALUES

SMOOTHED (5-yr mean) VALUES

Spinach Creek 13

mean sample ring-width index (et/ev, units)

3-stand mean

year
Relationship of temperature indices to radial growth of positive responders in Alaska birch

ANNUAL VALUES

- Temperature
- Ring-width

SMOOTHED (5-yr mean) VALUES

- Live Birch

<table>
<thead>
<tr>
<th>Mean sample ring-width index (stdev. units)</th>
<th>Year</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Year</th>
</tr>
</thead>
</table>
Response of radial growth to temperature in black spruce on permafrost in central Alaska
Relationship of winter temperature index and relative growth of black spruce on permafrost, Fort Wainwright

- **Recorded temperature** (JanDec-1Jan-1Feb-1Dec)
- **Ring-width (FWD, n = 20)**

ECHAM scenario

CSM scenario

- Winter temperature (°C)
- Ring-width index (stdev)

Year range: 1900 to 2100.
Relationship of summer temperatures and relative growth of black spruce on permafrost, Toghotthele Corporation land, central Alaska

- Recorded temperature (mean of May, Jun, Jul, & Aug)
- Regional tree ring-width
- CCC scenario
- CSM scenario

Relative radial growth (stddev units)

Year: 1850 to 2100

Mean temperature (°C)

Colder and warmer zones are indicated.

Probable zone of species elimination.
Brooks Range

Mean ring-width (mm)

Decade ending

Conclusions

- Three major Alaskan boreal species have both positive and negative radial growth response to temperature
- We can expect to see landscape scale changes in species composition with increased warming and with increased disturbance as a result of changing climate (fire, insects, permafrost)
The End